[파이썬을 활용한 통계 개념 기초] 07. 표준화와 정규화(Standardization and Normalization)
통계/파이썬을 이용한 통계 기초2024. 10. 5. 09:30[파이썬을 활용한 통계 개념 기초] 07. 표준화와 정규화(Standardization and Normalization)

표준화와 정규화는 스케일링 (Scaling) 기법으로, 데이터의 스케일을 조정하여 모델이 특정 변수에 의존하거나 왜곡된 결과를 내는 것을 방지하고, 더 정확한 예측과 분석을 할 수 있게 돕습니다. 특히 머신러닝과 딥러닝에서 자주 사용됩니다.표준화와 정규화표준화 (Standardization)정의 : 데이터의 평균을 0, 표준편차를 1로 변환하는 기법.목적 : 다양한 변수의 분포와 단위가 다를 때, 동일한 기준으로 변환하여 상대적 비교를 용이하게 합니다.수식 :특징 :평균이 0, 표준편차가 1로 맞춰짐.데이터 분포의 모양은 유지하되, 중심을 0으로 맞추고 스케일을 조정하여, 모든 변수들이 동일한 표준편차를 갖게 함.이상치(Outliers)가 있는 데이터에도 강한 내성을 가질 수 있습니다. (평균 중심의 변..

프로그래밍/데이터 분석2024. 8. 4. 17:12[데이터 분석 심화 개념] 차원 축소 개념 정리

이번 글은 코드잇 강의를 수강하면서 배운 내용을 주로 하여 정리되어 있습니다. (코드잇 스프린트 데이터 애널리스트 트랙 1기 훈련생)차원 축소란?차원 축소데이터에서 ‘차원’이란 변수의 개수를 의미합니다.변수가 1개인 데이터는 1차원 데이터, 변수가 2개인 데이터는 2차원 데이터, n개인 데이터는 n차원 데이터라고 부릅니다.예를 들어, 고객 정보 데이터에서 변수가 6개인 경우, 각 변수는 고객의 다양한 특성을 나타냅니다.차원이 높은 데이터를 분석에 활용하면 더 많은 정보를 반영한 결과를 얻을 수 있기에 차원이 많은 데이터를 활용할 필요가 있습니다.이렇게 데이터의 차원이 높아지면 많은 정보를 나타낼 수 있지만, 너무 많은 차원은 분석의 정확도를 떨어지는 결과를 불러 일으키며, 이를 ‘차원의 저주’라고 합니다..

300x250
image