음이항 분포(Negative binomial distribution) 음이항 분포(Negative Binomial Distribution)의 개념음이항 분포는 이항 분포의 확장된 개념으로, 특정한 사건(성공)이 r번 일어날 때까지 실패가 몇 번 일어나는지에 대한 확률 분포입니다. 이 분포는 베르누이 시행의 반복으로 이루어집니다. 주요 개념이항 분포(Binomial Distribution): 성공/실패 두 가지 결과만 있는 베르누이 시행을 n번 반복했을 때, r번 성공할 확률을 나타냅니다. 시행 횟수 n은 고정되어 있습니다.음이항 분포: r번 성공할 때까지 시행되는 베르누이 시행의 실패 횟수에 대한 분포를 나타냅니다. 이때, 성공 횟수 r은 고정되어 있지만, 시행 횟수 n은 고정되지 않습니다.수식음이항 분..
근사(Approximation)근사(Approximation)의 정의근사는 복잡하거나 정확한 계산이 어려운 문제를 간단한 방법으로 대체하여 해결하는 방법입니다. 통계에서 주로 정규분포 근사가 많이 사용되며, 복잡한 분포를 더 계산이 쉬운 정규분포로 대체하여 계산하는 경우가 많습니다.근사의 필요성복잡한 계산 단순화: 많은 실제 문제에서는 표본 크기가 크거나 계산이 복잡하여 정확한 확률 분포를 계산하는 것이 어렵습니다. 이때 근사를 통해 대략적인 결과를 얻는 것이 실질적으로 유용할 수 있습니다.실용성: 통계에서는 분석 속도와 실용성을 높이기 위해 자주 근사 방법을 사용합니다. 예를 들어, 큰 표본에서 이항분포나 포아송 분포 등을 정규분포로 근사하여 처리할 수 있습니다.정규분포 근사 (Normal Approx..
이항 분포는 수학적 개념이지만, 일상에서 자주 만나게 되는 확률을 설명할 때 유용한 도구입니다. 예를 들어, "동전을 10번 던졌을 때 몇 번 앞면이 나올까?"와 같은 질문에 답하는 데 사용할 수 있습니다. 그렇다면 이항 분포가 무엇인지, 어떻게 적용되는지 쉽게 설명해 보겠습니다.이항 분포 (Binomial distribution)이항 분포란?이항 분포(Binomial distribution)는 성공/실패처럼 두 가지 결과만 나오는 실험을 여러 번 반복할 때, 성공할 확률을 구하는 데 사용되는 확률 분포입니다. 쉽게 말해, 동전 던지기나 제품 구매 여부 같은 실험에서 성공(혹은 실패) 횟수를 예측하고 싶을 때 이항 분포를 사용합니다.여기서 중요한 요소는 밑과 같습니다:성공 확률: 예를 들어, 동전을 던질..
기초 통계 분석은 데이터를 이해하고 설명하기 위한 첫 번째 단계로, 데이터의 주요 특성을 요약하고 시각화하는 데 중점을 둡니다.R 프로그래밍에서는 다양한 기본 함수를 사용해 이러한 분석을 쉽게 수행할 수 있습니다.기초 통계 분석기본 통계량 계산평균(mean): 데이터의 중심 위치를 나타내며, R에서는 mean() 함수를 사용해 계산합니다.mean_value 중앙값(median): 데이터를 크기 순으로 정렬했을 때 중앙에 위치한 값으로, 이상치에 영향을 덜 받습니다. R에서는 median() 함수로 계산합니다.median_value 분산(var) 및 표준편차(sd): 데이터가 평균을 중심으로 얼마나 퍼져 있는지를 나타냅니다. 분산은 var(), 표준편차는 sd() 함수로 계산합니다.variance 범위(r..
지난번 01. 확률(Probability) 글에서 설명한 확률 분포는 균일 분포(Uniform distribution)라고 말할 수 있습니다.지난번에 설명한 균일 분포 (Uniform Distribution)를 다시 설명하면 균일 분포란 사건의 모든 가능한 결과가 동일한 확률을 가지는 분포입니다.(사건이 무엇인지와 무관하게 확률이 동일한 분포)균일 분포는 결과 간의 확률이 무차별적이며, 특정한 값이 나타날 가능성이 다른 값들과 동일합니다. 일반적으로 확률 분포의 값은 사건과 모수(parameter)에 따라 달라지며, 그 사이의 관계를 수식을 통해 정의할 수 있습니다.베르누이 분포 (Bernoulli Distribution)정의: 결과가 두 가지(예: 성공/실패)로 나뉘는 이산 확률 분포(결과 값이 둘 중..